O.P.	Code:	16EE205
------	-------	---------

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations July-2021 NETWORK ANALYSIS

(Electronics and Communication Engineering)

Time: 3 hours

1

Max. Marks: 60

6M

6M

R16

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a Explain the concept of source transformation?6Mb Using nodal analysis find all branch currents for the following circuit6M

OR

- **2** a State and explain milliman's theorem.
 - **b** Verify Superposition theorem for 4Ω resistor for the following circuit

UNIT-II

3 a What is time constant? What are the time constants of series RL and RC circuits? 6M
b A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine 6M circuit current and power factor if R=40Ω, L=0.2H and C=50µF.

OR

4 a Define power factor, apparent power, active power and reactive power. 6M
b The impedances of parallel circuit are Z1= (4+j6) ohms and Z2 = (12-j8) ohms. If the applied voltage is 220V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.

Q.P. Code: 16EE205

8

9

10

UNIT-III

R16

6M

6M

- a Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel 6M
 R-L-C circuit.
 - **b** A series RLC circuit has R=10 Ω , L=0.5H and C=40 μ F. The applied voltage is **6M** 100V. Find
 - (i) Resonant frequency & Quality factor of a coil
 - (ii) Bandwidth
 - (iii) Upper and lower Half power frequencies
 - (iv) Current at resonance & current at half power points
 - (v) Voltage across inductance & voltage across capacitance at resonance.

OR

- 6 a Define and explain self and mutual inductance.
 - b In a parallel resonance circuit (Tank circuit) R=2Ω, L=1mH and C=10µF, Find the 6M
 Resonant frequency, Dynamic impedance and Bandwidth.

 4Ω

MM

8Ω

UNIT-IV

7 a Find the h- parameters for the following circuit.

	${\displaystyle \displaystyle \leqslant 6 \ \Omega}$		
b	Find the relationship between Z and h parameters.	6M	
	OR		
a	a Explain about proper and improper behavior of the circuits.		
b	b Explain about the state variables and state variables of circuits.		
	UNIT-V		
a	a What is a constant K low pass filter, derive its characteristics impedance.		
b	b Explain the classification of pass band and stop band in detail.		
	OR		
a	a Derive the expression for characteristic impedance in a pass band filter.		
b	Derive necessary expressions for m-derived high pass filter.	6M	

*** END ***

Page 2 of 2